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An integrated framework for breast 
mass classification and diagnosis 
using stacked ensemble of residual 
neural networks
Asma Baccouche1*, Begonya Garcia‑Zapirain2 & Adel S. Elmaghraby1

A computer-aided diagnosis (CAD) system requires automated stages of tumor detection, 
segmentation, and classification that are integrated sequentially into one framework to assist the 
radiologists with a final diagnosis decision. In this paper, we introduce the final step of breast mass 
classification and diagnosis using a stacked ensemble of residual neural network (ResNet) models (i.e. 
ResNet50V2, ResNet101V2, and ResNet152V2). The work presents the task of classifying the detected 
and segmented breast masses into malignant or benign, and diagnosing the Breast Imaging Reporting 
and Data System (BI-RADS) assessment category with a score from 2 to 6 and the shape as oval, 
round, lobulated, or irregular. The proposed methodology was evaluated on two publicly available 
datasets, the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-
DDSM) and INbreast, and additionally on a private dataset. Comparative experiments were conducted 
on the individual models and an average ensemble of models with an XGBoost classifier. Qualitative 
and quantitative results show that the proposed model achieved better performance for (1) Pathology 
classification with an accuracy of 95.13%, 99.20%, and 95.88%; (2) BI-RADS category classification 
with an accuracy of 85.38%, 99%, and 96.08% respectively on CBIS-DDSM, INbreast, and the private 
dataset; and (3) shape classification with 90.02% on the CBIS-DDSM dataset. Our results demonstrate 
that our proposed integrated framework could benefit from all automated stages to outperform the 
latest deep learning methodologies.

Over years, breast cancer has remained the most frequently diagnosed non-skin cancer and the leading cause 
of death among females with a rate of 32% of total cancer cases1. According to the American Cancer Society, 
it is estimated that over 290,000 new cases will be reported and 43,780 women will die from breast cancer in 
20222. Early detection and diagnosis of breast cancer is the most effective way to treat this disease and reduce 
the mortality rate3.

Mammography has been proven the most reliable and preferred tool used by radiologists to screen and inves-
tigate suspicious breast lesions4. However, with the increase in the number of daily-screened mammograms, an 
efficient diagnostic methodology is necessary to assist doctors in the timely procedure of breast cancer. Thus, 
computer-aided diagnosis (CAD) systems, that perform computational image analysis, could provide a second 
suggestion and read to the final examination of the experts regarding the presence of breast cancer5,6.

A completely integrated CAD system would start its first stage, the detection and localization of suspicious 
lesions and distinguish between their types, i.e. mass, calcification, architectural distortion, etc. Then, at a sec-
ond stage, the CAD system should perform a segmentation of the obtained region of interest (ROI) surround-
ing the breast lesion to recognize its anatomical contour and remove its tissue background without losing its 
shape precision. Finally, diagnostic information can be extracted regarding the lesion’s pathology to classify the 
decided lesion as either malignant or benign, and identify its characteristics such as tumor grading using Breast 
Imaging Reporting and Data System (BI-RADS) score, and shape categorization. As the automated procedure 
relies on connected stages, each output information must be generated precisely to generate a fast and accurate 
final decision. Therefore, different algorithms have been widely implemented in CAD systems, and the most 
commonly used are conventional machine learning classifiers and threshold-based methods that are based on 
handcrafted features7–9.
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With the practical challenges that breast tumors offer due to their variation in size, shape, location, and 
texture, there has been a significant need to improve the overall performance of CAD systems and reduce false 
positive and negative cases. With the recent progress in computers and their enhanced computational capacity 
and speed, deep learning methodology has been broadly suggested in biomedical applications10,11 and particularly 
in CAD systems for mammography12–15.

In the last two decades, deep learning has shown growing success in many computer vision tasks and has 
proven a capability to overcome complex problems in the medical imaging domain. As a result, several works 
have been suggested and applied particularly in mammography, such as for tumors detection16,17, breast lesions 
segmentation18,19, and classification20.

Recently, deep learning models have exceeded the simple adaptation of convolutional neural networks (CNN) 
algorithms to present several advanced architectures that outperformed the image classification results21,22. The 
CNN architecture model was initially suggested for image classification and has been the base of many popular 
state-of-the-art architectures such as ResNet, AlexNet, EfficientNet, VGG, etc. Consequently, many works have 
studied and applied the recent classification models for breast lesions classification, and have been employed in 
CAD systems in different methodologies such as using ensemble learning23,24, transfer learning25,26, and fusion 
modeling27–29.

In this paper, we conduct the final stage in a CAD system, breast mass classification and diagnosis, using 
a stacked ensemble of neural network models. The proposed methodology completes our recent works con-
veyed for breast lesions detection and classification from entire mammograms, and is followed by a breast mass 
segmentation step. The work presents an integrated framework for the CAD system for breast cancer as the 
performance relies on three connected stages, and the current step generates the final decision about the breast 
mass’ pathology (i.e. benign or malignant), its BI-RADS category (i.e. score from 2 to 6), and its shape (i.e. oval, 
round, lobulated, or irregular).

The rest of the paper is organized as follows. First, the literature review of mass classification and diagnosis 
using deep learning, transfer learning and ensemble learning techniques is introduced in Sect. 2. In Sect. 3, 
details of our methodology are presented, including a description of the basic ResNet model and the suggested 
stacked ensemble of neural networks, followed by details about the used breast cancer datasets and preprocessing 
techniques. Then, in Sect. 4, we discuss the hyperparameters tuning applied for training the model, and present 
quantitative and qualitative results that are next compared with other works. We conclude the paper in Sect. 5 
with a discussion of our proposed methodology and future works.

Literature review
Several research studies have attempted to suggest machine learning methods for computer-aided diagnosis 
(CAD) systems to assist experts in their final diagnostic decisions and have focused on improving the results of 
breast mass classification in digital mammography. In this context, Dhahri et al.30 used a Tabu search to select 
the most significant features and then fed them into a K-Nearest Neighbors (KNN) algorithm to classify breast 
lesions into malignant or benign.

Since their development, many studies have given more attention to incorporating deep learning methods 
in CAD systems as they showed better efficiency than traditional CAD systems, which require extensive feature 
extraction. For instance, an end-to-end approach was developed by Shen et al.31 to classify digital mammograms 
into cancer or normal. The work presented a modern CNN structure using the VGG network and the residual 
network (ResNet), and achieved an area under the roc curve (AUC) of 0.91 on the CBIS-DDSM dataset and an 
AUC of 0.98 on the INbreast dataset. Another end-to-end model, called DiaGRAM, was built by Shams et al.32 
that combined CNN and Generative Adversarial Networks (GAN). The work was conducted to classify mammo-
grams as benign or cancerous and showed an accuracy of 89% on the DDSM dataset and 93.5% on the INbreast 
dataset. An improved deep learning method, called the DenseNet-II model, was invented in a work by Li et al.33 
for the classification of benign and malignant mammograms. The model was applied to a private collection of 
mammograms and reached an accuracy of 94.55%. Accordingly, a model for mass classification was proposed 
by Zhang et al.34 that fused texton features with deep CNN features and achieved an accuracy of 94.30% on the 
CBIS-DDSM dataset. In another work by Muramatsu et al.35, a CNN model’s performance was improved by 
adding synthetic data generated from lung nodules in computed tomography (CT) using cycle GAN. The clas-
sification performance was tested on a DDSM dataset and achieved an accuracy of 81.4%. Recently, Chakravarthy 
et al.36 proposed a customized method that integrated deep learning with an extreme learning machine (ELM) for 
classifying abnormal ROI images into malignant or benign. The proposed work achieved a maximum accuracy 
of 97.19% on DDSM, 98.13% on the Mammographic Image Analysis Society (MIAS) dataset and 98.26% on 
INbreast datasets. In a recent work by Khan et al.37, a multi-view feature fusion (MVFF) based-CAD system was 
implemented to increase the performance of CNN by combining information from four views of mammograms 
in order to classify them into malignant or benign with an AUC of 0.84 on the CBIS-DDSM and mini-MIAS 
databases. A work by Jasti et al.38 tackled the problem of breast cancer diagnosis using first feature extraction 
by AlexNet model, feature selection by the relief algorithm, and simple machine learning models for disease 
categorization by KNN, random forest and Naïve Bayes.

Moreover, Kumar et al.39 suggested a classification framework for breast density using an ensemble of 4-class 
neural network classifiers. The work showed a classification accuracy of 90.8% on the DDSM dataset. A recent 
work by Yurttakal et al.40 has introduced a stacked ensemble of gradient boosting and deep learning models to 
classify breast tumors using DCE-MRI images. The work has shown an accuracy of 94.87% and an AUC value 
of 0.9728 on a private breast MRI dataset.

Besides ensemble learning methodology, transfer learning was also adapted with deep learning techniques 
to develop an approach for differentiation between benign and malignant breast cancer. Hence, in a work by 
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Alkhaleefah et al.41, double-shot transfer learning (DSTL) was used by fine-tuning various pre-trained networks 
once on an ImageNet dataset, and another time on a larger dataset similar to the target dataset. The method was 
trained on the CBIS-DDSM and showed a better performance than single-shot transfer learning with an average 
AUC of 0.99 on the MIAS dataset and 0.94 on the BCDR dataset. Similarly, Falconí et al.42 used transfer learning 
on a NasNet Mobile model and fine tune on VGG models to classify mammogram images according to the BI-
RADS scale achieving an accuracy of 90.9% on the INbreast dataset. Recently, a work by Medeiro et al.43 com-
bined DenseNet201 and multi-perceptron layer (MLP) models to classify the pathology within BI-RADS levels 
3 and 4 for malignancy of breast masses. The model achieved an accuracy of 63% surpassing the performance 
of a human expert by 9.0%. Another recent work by Tsai et al.44 proposed a deep neural network (DNN)-based 
model trained using block-based images segmented to classify BI-RADS categories for a private Asian dataset.

To accomplish an efficient mass classification and diagnosis procedure, researchers have shown that captur-
ing texture and morphological characteristics could help doctors understand the nature of the breast tumor 
and assess its malignancy scale. For instance, research by Bi et al.45 showed that the probability of malignancy is 
highly correlated with the shape and morphology of a breast lesion. Therefore, several works have incorporated 
the segmentation stage to provide a complete, significant diagnosis. In a previous work by Tsochatzidis et al.46 
modified convolutional layers of a CNN to integrate both input images and their corresponding segmentation 
maps in order to improve the diagnosis of breast cancer. The method was applied to DDSM-400 and CBIS-DDSM 
datasets and achieved a diagnosis performance of AUC of 0.89 and 0.86. Similarly, a dual convolutional neural 
network was suggested by Li et al.47, which computed the mass segmentation and simultaneously predicted the 
diagnosis results. The model contributed an improvement to the mass segmentation and cancer classification 
problem at the same time and achieved an AUC of 0.85 on the DDSM dataset and 0.93 and the INbreast dataset.

Recently, most of the developed CAD systems have automated the breast cancer diagnosis procedure that 
gets an entire mammogram image and returns the final diagnosis. Thus, many studies have integrated the first 
stage of identifying the suspicious region of breast lesions and based on its automated output, performed the 
segmentation and classification tasks. For instance, Sarkar et al.48 proposed an automated CAD system that 
detects suspicious regions of potential lesions using a deep hierarchical prediction network and then classifies 
them into mass or non-mass, and finally into malignant or benign using a CNN structure. The work was tested 
and achieved an accuracy of 98.05% on the DDSM dataset and 98.14% on the INbreast dataset. Another fully 
automated system by Dhungel et al.49 for breast mass classification integrated mass detection and segmentation 
in a complete CAD system. The methodology used a multi-scale deep belief network (m-DBN) classifier followed 
by a cascade of CNNs and random forest classifiers for false positive reduction for mass detection, a conditional 
random field (CRF) for mass segmentation, and a multi-view deep residual neural network (mResNet) for mass 
classification. The proposed work achieved an AUC of 0.8 on the INbreast dataset. Another recent work by Singh 
et al.50 presented an automatic workflow that detects breast tumor regions from mammograms using the Single 
Shot Detector (SSD), and then outlines its segmented mask using conditional Generative Adversarial Network 
(cGAN) that was finally used for shape classification using a CNN. The framework achieved an overall accu-
racy of 80% for the shape classification. Similarly, Al-Antari et al.51 proposed a fully integrated CAD system for 
digital mammograms via deep learning techniques. It started with a mass detection using the You-Only Look 
Once (YOLO) architecture model, then performed a mass segmentation on the detected regions using a Full 
resolution convolutional network (FrCN), and finally classified the detected and segmented masses into benign 
or malignant using a CNN model. The entire framework had an overall classification accuracy of 95.64% on 
the INbreast dataset. The mass classification step was differently solved in recent work by Al-Antari et al.52 that 
separately adopted three conventional deep learning models including regular feedforward CNN, ResNet-50, 
and InceptionResNet-V2. The work achieved a maximum accuracy of 95.32% on the INbreast dataset.

Inspired by the continuous success of the CNN model and its variations for breast mass classification, we 
propose a stacked ensemble of residual network (ResNet) models to classify and diagnose previously detected and 
segmented mass lesions. The proposed model uses three different architectures of the ResNet model, ResNet50V2, 
ResNet101V2, and ResNet152V2 that are transferred and fine-tuned on our mammography datasets. The models’ 
layers are stacked together and reconfigured into an entire model for an overall classification and diagnosis of 1) 
the pathology as malignant or benign; the BI-RADS category as assessment score from 2 to 6; and 3) the lesions’ 
shape as round, oval, lobulated, or irregular.

The contributions of this paper are as follows:

•	 We demonstrate the efficiency of a type of ensemble modeling technique—a Stacked ensemble of neural 
networks—in enhancing the individual performance of one of the SOTA models for mammography image 
classification

•	 We show that an integrated framework of CAD system for breast cancer, where detection and segmentation 
results are highlighted, is essential for a precise classification and diagnosis

•	 We present a complete breast cancer diagnosis with malignancy classification, BI-RADS assessment score 
and tumor shape categorization

The presented work will serve as the last stage of an integrated framework for a breast cancer CAD system. 
The previous stages were proposed in recent works by Baccouche et al. where the detection and classification 
step was first applied using a YOLO-based fusion model to localize and identify suspicious breast lesions as 
mass or classification28, and then using only the detected masses, a Connected-UNets model was suggested for 
breast mass segmentation improved with combining real and synthetic data generated by CycleGAN model53.

The paper is inspired by ensemble model learning and fusion modeling that showed high efficiency in many 
recent studies. The suggested methodology was performed on two most popular public mammography datasets: 
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Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and INbreast, 
and on a private collection of mammograms.

Material and methods
In this study, we propose a stacked ensemble of models to classify and diagnose detected and segmented breast 
masses. The base model comes from the ResNet architecture and its variations. Our methodology employs dif-
ferent strategies: transfer learning, stacked ensemble learning, and image data augmentation.

ResNet base model: transfer learning and fine‑tuning.  Since its introduction, ResNet is a deep CNN 
architecture suggested by He et al.54 that have been one of the recent architectures that has known common 
success in medical imaging applications55,56. ResNet uses residual blocks with skip connections between layers 
to bypass a few convolution layers at a time. This architecture accelerated the convergence of a larger num-
ber of deep layers, and consequently it has been found efficient to provide a compact representation of input 
images and improve the classification task performance27. The ResNet has some common architectures such 
as ResNet-50, 101, and 152,46 which indicate the number of deep layers. Alternatively, ResNet architecture pre-
sented an improved version of ResNetV2 by He et al.57, where the last ReLU was removed to clear the shortcut 
path using a simple identity connection as shown in Supplementary Fig. 1.

Our methodology employs three pre-trained ResNetV2 architectures, detailed below in Supplementary 
Table 1. Training a deep learning model often requires a large amount of annotated data that helps optimize the 
high number of parameters and computations needed in the architecture. However, the limited size of medical 
imaging datasets is usually available that suffer from either missing labels or imbalanced data distribution. To 
overcome these challenges, transfer learning has been a common solution used in many recent medical image 
applications58,59 by training a model on a large and diverse dataset (i.e. ImageNet, MSCOCO, etc.) to capture 
universal features like curves, edges, and boundaries in its early layers that are relevant for image classification. 
After that, the pre-trained model should be alerted and fine-tuned on a custom and specific dataset to reflect 
the final classification. This procedure provides a fast and generalizable training of small datasets and avoids the 
overfitting problem that deep learning commonly suffers from.

As Fig. 1 indicates, we apply transfer learning to the base architecture ResNetV2 for our proposed methodol-
ogy to become a TF-ResNetV2. The model was initially pre-trained on ImageNet, and then the first four residual 
blocks of layers were frozen except for the BN layers that needed to be retrained in order to improve the training 
convergence. After that, the entire architecture was modified by adding another FC layer with a size of 1024, 
followed by a dropout regularization layer to maintain a generalization aspect for the training. A new final FC 
layer was placed according to the number of classes for each classification task and the entire TF-ResNetV2 is 
re-trained.

Stacked ensemble of ResNet models for breast mass classification.  Ensemble learning has been 
considered efficient to improve the classification task results. Combining weaker classifiers to create a better final 
classification prediction has been adopted by either bagging, boosting, or stacking models. While bagging is 
achieved by learning independently from different models and then averaging the predictions, boosting happens 
by sequentially learning from homogenous learners and iteratively combining them into a final model. On the 
other hand, stacking has been considered a way to learn different weak learners in parallel and combine them 
into a meta-model that is later trained to achieve the classification prediction60.

We propose a stacked ensemble of three different ResNet models to conduct our classification tasks. After 
removing the last FC layer of each ResNetV2 architecture, a two-layers network is considered as a meta-classifier 
model that concatenates the three models’ layers, and stacks three different FC layers of sizes 1000, 100 and 

Figure 1.   Framework of the classification base model: a TF-ResNetV2 model which is a ResNetV2 model pre-
trained on ImageNet data and modified and fine-tuned on mammography dataset.
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10, coupled with activation functions Sigmoid and ReLU. As shown in Fig. 2, after training independently 
ResNet50V2, ResNet101V2 and ResNet152V2, pre-trained weights of each model were extracted as images fea-
tures of size 1024 based on previous layer predictions and considered as new input of the entire stacked ensemble 
of ResNet models for the final class prediction.

Integrated framework: mass detection, segmentation and classification.  Our final framework 
should now be complete with all automated steps for breast cancer analysis and diagnosis. Therefore, as shown 
in Fig. 3, the integrated framework detects and localizes breast masses in a first step using YOLO-based fusion 
models28, which only require an entire mammogram image and outputs bounding boxes around specious 
lesions. The model was evaluated and provided a maximum detection accuracy of 98.1% for mass lesions. The 
next step should segment the detected ROI of breast masses and generate a binary mask image where only the 
boundary of the lesions is visible. The second step is achieved using the proposed Connected-UNets model53 that 
was improved by synthetic data, which is generated by CycleGAN. The segmentation step was conducted on ROI 
images scaled to optimal size of 256 × 256 pixels.

The evaluation showed a high Dice score of 95.88% and Intersection over Union (IoU) of 92.27%. After that, 
the segmented and detected ROI of breast masses generated with masked tissue is used for the third and final 
classification step. The stacked ensemble of ResNet models is trained independently on the input ROI masses 
for each classification task to finally predict the pathology as either malignant or benign, the BI-RADS category 
with an assessment score between 2 to 6, and the shape as either round, oval, lobulated or irregular.

Figure 2.   Framework of the classification Stacked Ensemble of ResNet models.

Figure 3.   The proposed integrated CAD framework. (a) Original mammogram with ground truth of mass 
(red), (b) Detected ROI of mass (yellow) superimposed on the original mammogram, (c) Detected ROI mass 
obtained with ground truth (red), (d) Output segmented binary mask of ROI mass, and (e) Segmented ROI 
mass with marked tissue.
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Datasets.  Similar to our previous works, we evaluate the proposed classification methodology on two public 
datasets, the CBIS-DDSM and INbreast datasets, and an independent private dataset. The CBIS-DDSM dataset61 
is an updated and standardized version of the Digital Database for Screening Mammography (DDSM), where 
images were reviewed by radiologists to eliminate inaccurate cases and converted from the Lossless Joint Pho-
tographic Experts Group (LJPEG). It contains 2907 mammograms from 1555 unique patients, where 1467 are 
mammograms with mass lesions acquired with two different views (i.e. MLO and CC). Original mammograms 
have an average size of 3000 × 4800 pixels and are associated with their pixel-level annotation and class labels (i.e. 
Pathology, BI-RADS category and Shape).

The INbreast dataset62 is a public database of Full-Field Digital Mammography (FFDM) images in DICOM 
format. It contains 410 mammograms from 115 unique patients where only 107 cases present mass lesions in 
both MLO and CC views. Original mammograms have an average size of 3328 × 4084 pixels and include pixel-
level annotation and class labels (i.e. Pathology and BI-RADS category).

The private dataset is a collection of mammograms from the National Institute of Cancerology (INCAN) in 
Mexico City and contains stages 3 and 4 of breast cancer with 389 cases from 208 unique patients having mass 
lesions. Images have an average of 300 × 700 pixels acquired from different views (i.e. CC, MLO, ML and AT), 
and include associated pixel-level annotation and class labels (i.e. Pathology and BI-RADS category). Figure 4 
illustrates samples of original mammograms and their ROI masses compared to the detected and segmented 
ROI masses from different datasets.

As the datasets were explored continuously during the previous studies, the original mammograms that 
included mass and calcification cases were used during the first step of detection and localization; therefore 
detected ROIs of only mass cases were retained for the second step of segmentation. It is fair to mention that 
some mammograms have multiple ROIs and hence the number of detected and segmented ROI masses used 
for the third step of classification and diagnosis may vary. Due to the limited amount of ROI masses in each 
dataset, raw ROIs data was augmented four times by rotating them with the angles Δθ = {0°, 90°, 180°, 270°}, and 
transformed twice differently using the Contrast Limited Adaptive Histogram Equalization (CLAHE) method. 
Table 1 details the data distribution of each mammography dataset regardless of the class labels.

Moreover, each mammography dataset has a different quality of images in terms of pixel quality, existing 
annotated labels and class distribution, as detailed in Tables 2, 3 and 4. Only the CBIS-DDSM dataset includes 
true class labels for lesions’ shape. Accordingly, the INbreast dataset indicates cases with a BI-RADS score from 
2 to 6, however, the CBIS-DDSM dataset presents cases in BI-RADS category 2 to 5, and the private dataset has 
only malignant cases as it acquired breast cancer cases from only stages 3 and 4. Consequently, all mammograms 
from the private dataset fall into BI-RADS categories 4 and 5.

Results
All experiments for the proposed methodology were conducted using Python 3.6 on a PC with the following 
specifications: Intel(R) Core (TM) i7-8700K processor with 32 GB RAM, 3.70 GHz frequency, and one NVIDIA 
GeForce GTX 1090 Ti GPU.

Data preparation.  Mammograms are often collected using a scanning machine of digital X-ray mam-
mography that usually compresses the breast and consequently, it degrades the images. Therefore, we apply 
preprocessing techniques to remove the additional noise and correct the data using a histogram equalization 
that smooths the pixel distribution. Furthermore, the pre-trained ResNet models require an input image size of 
224 × 224; therefore, we resize the detected and segmented ROIs from 256 × 256 using an inter-area resampling 
interpolation. Finally, all images are normalized to a range of [0, 1]. Samples of input data for each classification 
class are illustrated in Fig. 5 where ROIs are distributed according to different class labels from the mammogra-
phy datasets.

Evaluation metrics.  All classification tasks are evaluated overall using the accuracy, and area under the 
curve (AUC) that reflect the performance of the model while considering the unbalanced mammography data-
sets. Particularly, for pathology classification, which presents a binary-classes case, we use three additional met-
rics called sensitivity, specificity scores, and F1-score, as shown in Eqs. 1, 2, and 3. The F1-score is a coefficient 
that represents a harmonic average between the specificity and sensitivity, where its maximum score of 1 indi-
cates perfect specificity and sensitivity and of 0 the worst performance. Moreover, the accuracy score is a rate 
of correct predictions over all cases as detailed in Eq. (4) where TP, TN, FP, and FN are defined per predicted 
class to represent the number of true positive, true negative, and false positive, and false negative predictions, 
respectively.

(1)Sensitivity =
TP

TP + FN

(2)Specificity =
TN

TN + FP

(3)F1− score =
2× TP

2× TP + FP + FN
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In pathology classification, positive refers to the malignant class and negative refers to the benign class. In 
BI-RADS category and shape classification, macro averaging is used to compute the accuracy and the AUC 
scores. Consequently, a confusion matrix can be driven from these measurements to show the tradeoff between 
the true and predicted class labels.

Hyperparameters tuning.  Extensive experiments with different variations in hyperparameters were con-
ducted to select the best parameters for the base ResNetV2 model. Considering their effect on the classification 

(4)Accuracy =
Trueprediction

Totalcases
=

TP + TN

TP + FP + TN + FN

Figure 4.   Samples of entire mammograms and ROI of a mass detected and segmented from different 
mammography datasets with ground-truth of location and contour of mass in red.
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performance, only hyperparameters detailed in Table 5 were tuned to select the best-configured network that 
outperforms the evaluated networks on all mammography datasets.

For all datasets, we randomly split images for each class into groups of 80% for training, and 20% divided 
equally between testing and validation sets. In each experiment, the same trainable parameters were used and 
each hyperparameter was varied accordingly. For all datasets and classification tasks, we used Adam optimized 
and evaluation was reported with a weighted accuracy score to reflect the class imbalance during the training 
and testing. The loss function was employed according to the classification task, a Binary Cross-entropy func-
tion for binary classes and a Categorical Cross-entropy for multiple classes. In both cases, a label smoothing 
technique for regularization to help overcome overfitting and provide a generalized model. The technique works 
by explicitly updating the labels during the loss function and decreasing the model’s confidence when it starts 
diverging63. In addition, training was monitored using a method that reduces the learning rate if the accuracy 
stops improving. Thus, we applied the stated strategy with a factor of 0.5 when the accuracy did not improve 
after two iterations. Conclusively, the best evaluation was reported with a batch size of 32, 30 epochs, a dropout 
rate of 30%, a learning rate of 10–2, and a smoothing label of 25%.

Quantitative classification results.  The proposed breast mass classification model was trained and com-
pared to single base models for each presented task on the different mammography datasets. We also compared 
the stacked ensemble of models to a conventional average of different models’ weights with an XGBoost classifier.

Pathology classification.  As shown in Tables  6, 7, and 8, the pathology classification results are compared 
between different models respectively for CBIS-DDSM, INbreast, and private datasets. It is reasonable to men-

Table 1.   General datasets distribution.

Dataset Raw MGs Data Raw ROIs Data Augmented Data (ROIs*6)

CBIS-DDSM 1467 1467 8802

INbreast 107 112 672

Private 389 638 3828

Table 2.   Pathology class labels distribution. *Cases with Benign_without_callback are considered Benign. 
**Cases with BI-RADS score > 3, are considered Malignant otherwise Benign.

Dataset

Pathology

benign Malignant

CBIS-DDSM* 4500 4302

INbreast** 150 522

Private 0 3830

Table 3.   Shape class labels distribution.

Dataset

Shape

Round Oval Lobulated Irregular

CBIS-DDSM 804 2040 2112 3846

INbreast NA NA NA NA

Private NA NA NA NA

Table 4.   BI-RADS category class labels distribution.

Dataset

BI-RADS

Category 2 Category 3 Category 4 Category 5 Category 6

CBIS-DDSM 792 1938 2328 3402 0

INbreast 144 78 126 276 48

Private 0 0 1627 2195 0
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tion that because the private dataset includes only malignant cases, we trained and tested the model on a com-
bination of all datasets.

The comparative results show that the proposed stacked ensemble of models performs better than the base 
ResNet models having different numbers of deep layers (i.e. ResNet50V2, ResNet101V2 and ResNet152V2). 
Accordingly, our proposed methodology outperformed the average ensemble of models with an XGBoost clas-
sifier that performed slightly better than individual models. We notice a high accuracy of 95.13% on the CBIS-
DDSM dataset, 99.2% on the INbreast dataset, and 95.88% on the private dataset. Besides, our proposed model 
achieved a high sensitivity rate of 0.93 on the CBIS-DDSM dataset, 1.0 on the INbreast dataset, and 0.93 on the 
private dataset. Consequently, the results emphasize generally the advantage of the ensemble learning technique 

Figure 5.   Samples of detected and segmented ROI masses for each class within different classification tasks 
from different mammography datasets.

Table 5.   Hyperparameters for the ResNetV2 base model.

Hyperparameters Values explored Description

Batch size 32, 64 mini-batch training size

Epochs 20, 30, 50 Number of training epochs

Dropout 0%, 20%, 30% % of neurons of hidden layers “dropped” for regularization

LR 10–1, 10–2, 10–3 Learning rate for the Adam optimizer

Smoothing 0% 20%, 25% % of label smoothing for the loss function

Table 6.   Pathology classification results on the CBIS-DDSM dataset.

Model Accuracy Sensitivity Specificity F1-score AUC​

Model1: ResNet50V2 89.97 0.89 0.91 0.9 0.9

Model2: ResNet101V2 93.57 0.92 0.95 0.94 0.93

Model3: ResNet152V2 92.11 0.92 0.92 0.92 0.92

Average Weights of Model1, Model2 and Model3 + XGBoost Classifier 91.04 0.85 0.98 0.91 0.91

Stacked Ensemble of models 95.13 0.93 0.97 0.95 0.95

Table 7.   Pathology classification results on the INbreast dataset.

Model Accuracy Sensitivity Specificity F1-score AUC​

Model1: ResNet50V2 98.52 1.0 0.93 0.97 0.96

Model2: ResNet101V2 95.58 1.0 0.80 0.93 0.9

Model3: ResNet152V2 96.6 1.0 0.90 0.91 0.94

Average Weights of Model1, Model2 and Model3 + XGBoost Classifier 97.9 1.0 0.96 0.98 0.97

Stacked Ensemble of models 99.2 1.0 0.98 0.99 0.99
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in improving the classification performance, and particularly the improvement achieved by the stacking method 
using deep learning models. Moreover, the pathology classification performance was compared against the dif-
ferent models using the AUC over the test sets of all datasets. Figure 6 shows plots of the Receiver Operating 
Characteristic (ROC) curves of the True positive Rate (TPR) against the False Positive Rate (FPR), and we notice 
that the proposed model outperformed all experimental techniques with an AUC of 0.95 for the CBIS-DDSM 
dataset, 0.99 for the INbreast dataset, and 0.96 for the private dataset.

BI‑RADS category classification.  Results that are shown in Tables 9, 10 and 11 for BI-RADS category classifica-
tion illustrate the comparison between different models for all mammography datasets. As mentioned in the 
section on Datasets description, each dataset has different class labels that vary from category 2 to category 6.

The classification results presented above demonstrate a clear improvement of the performance using our 
proposed stacked ensemble of models compared to the basic models with an accuracy of at least 3.78% on the 
CBIS-DDSM dataset, and 1% on the INbreast dataset, and 1.83% on the private dataset. Moreover, our methodol-
ogy achieved a better AUC score than the average ensemble model with an XGBoost classifier where we notice a 
high AUC of 0.94 for the CBIS-DDSM dataset, 1.00 on the INbreast dataset, and 0.95% on the private dataset. This 
can be confirmed with a visual comparison of ROC curve plots between employed models as illustrated in Fig. 7.

Shape classification.  Lastly, the proposed model was trained on the CBIS-DDSM dataset for classifying the 
shape of breast masses, as it is the only dataset that possesses shape annotation by experts. Equivalently, all 
trained models were tested, and a comparison is shown in Table 12. Undoubtedly, our suggested stacked ensem-

Table 8.   Pathology classification results on the Private dataset.

Model Accuracy Sensitivity Specificity F1-score AUC​

Model1: ResNet50V2 92.83 0.94 0.90 0.91 0.92

Model2: ResNet101V2 94.18 0.94 0.95 0.93 0.94

Model3: ResNet152V2 94.60 0.94 0.94 0.94 0.94

Average Weights of Model1, Model2 and Model3 + XGBoostClassifier 94.89 0.94 0.97 0.93 0.94

Stacked Ensemble of models 95.88 0.93 0.97 0.95 0.96

Figure 6.   Performance of pathology classification using different models in terms of ROC curves and AUC 
score.
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ble of models had the highest accuracy score of 90.02% among the employed models, which improved the per-
formance of separate models notably with 1.7% and remarkably with 10.66% compared to the average ensemble 
of models with an XGBoost classifier.

Furthermore, Fig. 8 presents a comparison of ROC curve plots for the different employed models and rep-
resents the AUC score accordingly. We notice that our proposed model had the highest AUC of 0.98 among the 
presented models, which was close to the ResNet152V2 performance but with a slightly better accuracy rate.

Qualitative classification results.  Previous comparison results highlighted that our proposed methodol-
ogy yielded the best results for the different classification tasks. Consequently, we analyzed the classification pre-
diction between different datasets using the confusion matrix that summarizes the results across the class labels.

Figures 9, 10 and 11 respectively present the normalized confusion matrix plots for each classification prob-
lem. As indicated below, the INbreast dataset had the best pathology classification tradeoff between malignant 
and benign classes, and this can be explained by the high-quality resolution of the mammograms collected in 
FFDM format that helps distinguish between the two class labels. The private dataset had also a remarkable confu-
sion matrix with close recall and precision scores, which were similar to the CBIS-DDSM dataset’s performance.

Moreover, the INbreast dataset had the best BI-RADS categorization tradeoff with a notable prediction per 
class from 0.92 to 1.0. Concerning the private dataset, it has only two BI-RADS categories 4 and 5, and we notice a 
similar satisfying confusion matrix with prediction scores of 0.93 and 0.96. The CBIS-DDSM dataset has a slightly 
worse tradeoff for the BI-RADS category classification and this is due to the low resolution of deteriorated ROI 
images from the digitized X-rays mammograms. the confusion matrix shows values from 0.80 to 0.89 and we 
notice that the four categories have a close prediction score due to the similarity of the pixel distribution caused 
by the quality presented in the public dataset.

Finally, the confusion matrix for the shape classification showed an overall sufficient tradeoff between the 
class labels. We observe similar predicted results for the irregular and lobulated cases with a maximum value of 
0.93, and this can be interpreted by the close appearance of the two lesions’ shapes. However, oval and round 
cases had worse results, and in particular, the round class label had a performance score of 0.73.

Additionally, we reported the classification results of the final integrated CAD system using the segmentation 
step and compared it to the results of the proposed method without using the segmented ROIs. Table 13 shows a 
better classification performance for each task on all mammography datasets, where the pathology classification 

Table 9.   BI-RADS category classification results on the CBIS-DDSM dataset.

Model Accuracy AUC​

Model1: ResNet50V2 80.07 0.93

Model2: ResNet101V2 77.12 0.92

Model3: ResNet152V2 80.08 0.93

Average Weights of Model1, Model2 and Model3 + XGBoost Classifier 79.48 0.85

Stacked Ensemble of models 83.84 0.94

Table 10.   BI-RADS category classification results on the INbreast dataset.

Model Accuracy AUC​

Model1: ResNet50V2 98.0 0.94

Model2: ResNet101V2 98.0 0.97

Model3: ResNet152V2 96.1 0.92

Average Weights of Model1, Model2 and Model3 + XGBoost Classifier 97.1 0.99

Stacked Ensemble of models 99.0 1.00

Table 11.   BI-RADS category classification results on the Private dataset.

Model Accuracy AUC​

Model1: ResNet50V2 91.91 0.91

Model2: ResNet101V2 92.43 0.92

Model3: ResNet152V2 94.25 0.94

Average Weights of Model1, Model2 and Model3 + XGBoost Classifier 92.95 0.93

Stacked Ensemble of models 96.08 0.95
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demonstrated an improvement of 4.26% on the CBIS-DDSM dataset, 4% on the INbreast dataset, and 5.5% on 
the private dataset. Accordingly, the BI-RADS category classification presented enhanced performance using the 
detected and segmented images with an accuracy difference of 3.69% on the CBIS-DDSM dataset, 1.5% on the 
INbreast dataset, and 0.38% on the private dataset. Finally, the CBIS-DDSM dataset improved the shape classifi-
cation results with 4.36% accuracy. Consequently, it is observed that the CAD system with the integrated detec-
tion and segmentation stages achieved much better results for the classification and diagnosis of breast masses.

Finally, a comparison of results of the latest state-of-the-art methods and similar models to classify the breast 
masses is listed in Table 14. Our proposed CAD system that integrates the previous detection and segmentation 
steps and the current proposed classification framework outperformed the previous deep learning models applied 
for pathology, BI-RADS category, and shape classification.

Compared with other techniques that used segmented ROIs, we exceeded the performance of the work 
by Falconí et al.25 that only achieving an accuracy of 78.4% using the MobileNet model on the CBIS-DDSM 
dataset. On the other hand, we also outperformed the work of Alkhaleefah et al.41 even though they did not use 
segmented input images and reported an accuracy of 93.47%. Moreover, recent works on the INbreast dataset 
were all surpassed where the highest accuracy of 98.26% was reported by Chakravarthy et al.36 using the ICS-
ELM algorithm on original ROI masses. We also reported a better accuracy score for the pathology classification 

Figure 7.   Performance of BI-RADS classification using different models in terms of ROC curves and AUC 
score.

Table 12.   Shape classification results on the CBIS-DDSM dataset.

Model Accuracy AUC​

Model1: ResNet50V2 75.51 0.90

Model2: ResNet101V2 89.90 0.95

Model3: ResNet152V2 88.32 0.97

Average Weights of Model1, Model2 and Model3 + XGBoost Classifier 79.36 0.84

Stacked Ensemble of models 90.02 0.98
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applied on segmented ROIs from the INbreast dataset, where Al-Antari et al.51 only achieved an accuracy of 
95.64% and an AUC score of 0.94. The results of the BI-RADS categorization also outperformed the previous 
works on the CBIS-DDSM dataset with the work suggested by Medeiros et al.43 that applied DenseNet201 on 
original ROI masses and only achieved an accuracy of 63.4%. No previous paper applied the BI-RADS category 
classification to segmented images and therefore we could not compare it with our proposed work. Accordingly, 
our method surpassed the performance on the INbreast dataset by the work of Falconí et al.42 only reported an 
accuracy of 90.9% using NasNet and VGG models. Lastly, our methodology gained the best shape classification 
performance compared to a recent work of Singh et al.50 that applied a CNN model on a similar dataset, and 
it is reasonable to say that this reviewed work is the only comparable work that applied shape classification on 
detected and segmented ROIs but only achieved an accuracy of 80%.

Discussion and conclusion
Deep learning models have recently revealed remarkable success in breast mass classification and diagnosis for 
many CAD systems. The CNN architecture model was mostly modified on many proposed studies and combined 
with other recent techniques such as transfer learning and ensemble model learning for better classification 
performance.

In this study, we have implemented a stacked ensemble of ResNet models to classify breast masses as malig-
nant or benign and diagnose their BI-RADS category assessment with a score from 2 to 6 and their shape as 
oval, round, lobulated or irregular. The results of the proposed methodology showed the classification perfor-
mance’s improvement compared to the individual architectures and the other methods applied to the existing 
benchmark datasets. Table 14 shows that we achieved the highest pathology classification performance on the 
two public datasets: CBIS-DDSM with an accuracy of 95.13% and an AUC score of 0.95, and INbreast with an 
accuracy of 99.20 and an AUC score of 0.99. Furthermore, we surpassed the results of other models for the BI-
RADS categorization on the CBIS-DDSM dataset with an accuracy of 85.38% and an AUC score of 0.94, and 
on the INbreast dataset with an accuracy of 99% and an AUC score of 1.0. We also reported the highest results 
on the shape classification for the CBIS-DDSM dataset with an accuracy of 90.02% and an AUC score of 0.98.

Compared with the similar frameworks that applied the presented classification tasks on segmented ROI 
masses, our model outperformed the MobileNet and NasNet models26 for the pathology classification on the 

Figure 8.   Performance of Shape classification using different models in terms of ROC curves and AUC score.

Figure 9.   Confusion matrix of the stacked ensemble of models for the pathology classification on the 
mammography datasets.
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CBIS-DDSM dataset and the Ensemble of AlexNet-based CNN model54 on the INbreast dataset. Moreover, the 
shape classification achieved better results on a similar dataset DDSM that was evaluated with an individual 
CNN model55. As a result, the stacking model technique provided an efficient way to learn from various depths 
of neural networks and combine them in another neural network classifier model to benefit from the different 
weights that were trained individually.

The work integrated our recent works of the YOLO-based fusion models28 and the Connected-UNets model53 
that generated the detected and segmented ROIs of breast masses. Indeed, an increase in performance using 
the segmented ROIs, as shown in Table 13, indicates the advantage of masking the background tissues from the 
tumors’ boundaries to help improve the overall classification and diagnosis, and decrease the false positive and 
negative rates. Limitations of the proposed methodology can occur on the long training time of 0.74 s per epoch, 
which is due to the high number of trainable parameters and computations of the ResNetV2 model.

In conclusion, this work presents the final stage of an integrated framework for a breast cancer CAD system 
via deep learning models. The three stages of detection, segmentation and classification aim to provide a com-
plete clinical tool that can assist radiologists with a second suggestion for an automated mass tumor diagnosis. 
Future works can include combining different mammography datasets and improving the long training of deep 
learning models for the classification task.

Figure 10.   Confusion matrix of the stacked ensemble of models for the BI-RADS category classification on the 
mammography datasets.

Figure 11.   Confusion matrix of the stacked ensemble of models for the Shape classification on the 
mammography datasets.
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Data availability
The public mammography dataset CBIS-DDSM generated and analyzed during the current study is available 
in the Cancer Imaging Archive, https://​wiki.​cance​rimag​ingar​chive.​net/​displ​ay/​Public/​CBIS-​DDSM. The public 
mammography dataset INbreast generated and analyzed during the current study is available from the cor-
responding author Inês Domingues, Porto, Portugal, on reasonable request after signing a transfer agreement. 
The private mammography dataset generated during and analyzed during the current study is available from 
the corresponding author Cristian Castillo Olea through the oncologist Dr. Eric Ortiz in the National Institute 
of Cancerology, Mexico.

Code availability
The code for custom algorithms and data preprocessing is provided as part of the replication package. It was 
written in Python v3.6. It is publicly available as a git repository on GitHub at https://​github.​com/​AsmaB​accou​
che/​Stack​ed-​Ensem​ble-​of-​Resid​ual-​Neural-​Netwo​rks.
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